
QUIP: Quantitative User Interface Profiling

Brian Helfrich
eXperimental Computing Facility

University of California at Berkeley
Berkeley, CA 94720 USA
brian@xcf.berkeley.edu

James A. Landay
Group for User Interface Research, CS Division

University of California at Berkeley
Berkeley, CA 94720 USA
landay@cs.berkeley.edu

ABSTRACT
We introduce a usability evaluation system that provides
automatic, quantitative analysis of usage trace data. A
problem with existing usability evaluation techniques such
as expert evaluation and walk-throughs is that the results
are subjective and qualitative. Observational research leads
to the most relevant results, but it can be expensive, and
analysis of the results is tedious. In the system that we
introduce, usage traces are automatically aggregated into a
usage profile in which disparities between user and designer
conceptual models are exposed graphically.

Keywords
User interface, usability, automated evaluation, profiling

INTRODUCTION
Some problems with usability evaluation techniques such as
expert evaluation and walk-throughs are that they do not
involve real users, and the results are subjective and
qualitative. Objective and quantitative information based on
real usage of an interface is better for the purposes of
understanding usability defects and planning resources for
fixing them. A problem with observational research is that it
often requires special equipment, facilities, and lots of time.
In addition, the post-experiment analysis of the results is
tedious and time-consuming.

Some usability evaluation systems provide automated forms
of usage trace analysis and visualization. Guzdial et. al.
reviews and introduces several of these systems in [2].
These systems each address important levels of analysis,
but none of them gives a full profile of actual usage.

In this paper we introduce a usability evaluation system
called QUIP that provides automatic, quantitative analysis
of usage trace data obtained from real users running an
instrumented version of a target application. The results are
presented in the form of a usage profile graph.

For example, the usage profile graph in Figure 1 is an
aggregate of the usage traces of two test users and the
designer of the UI, all performing the same task. In the

profile, each node is a
user action, for example,
node A might represent a
“File|Open...” menu
selection, node B a list
item selection, node C an
“Open” button click, and
so on.

The directed arcs between the nodes indicate the sequences
of actions taken by the users. The path highlighted in green
(diagonal shading in the above figure) corresponds to the
path taken by the designer of the UI. The width of the arc
corresponds to the fraction of test users who performed the
subsequence. For example, the thick arc between action A
and B indicates that all the users took this path, and the thin
arc between action B and C indicates that only the designer
of the UI took this path.

The color of the arcs correspond to the average time
between the two actions for users taking that path. The
color range is a continuous blue gradient from white, for
one second or less, to fully saturated blue (dark gray in the
above figure), for times exceeding ten seconds. For
example, in Figure 1, we can see that all the users quickly
performed action B after having completed action A, while
there was (on average) some hesitation on the part of the
test users before performing action D.

In the following sections, we give an overview of the
system with reference to a pilot study and then give some of
the results of the pilot study. The pilot was performed at a
company developing a sophisticated Java-based marketing
application. The test participants comprised five male
marketing professionals, who were expert users of the
application, and two of the UI developers.

SYSTEM OVERVIEW
To use QUIP, programmers first instrument the target
application code. Users are then given tasks to complete,
and action data is recorded. Finally, the system computes an
aggregate profile graph that designers can use to detect UI
defects. Here we describe these steps in more detail.

BA C

D

Figure 1 Example usage profile

Instrumenting the user interface
The UI under evaluation is instrumented such that each
action that the user performs is recorded. The data recorded
for each action includes a test session identifier, a
timestamp (in milliseconds), descriptive information about
where in the UI the action took place (e.g., file open
dialog), the action (e.g., “Open” button clicked), and, if
applicable, text entered by the end-user via keyboard. These
records are written to a SQL Server™ database. Caching
and a separate instrumentation thread are used to minimize
effects on the performance of the application.

Recording the data
A high-level task description that exercises the UI being
evaluated is prepared. The test users and UI designer(s)
then carry out the task on the instrumented system. The
designer trace represents the expected usage1.

Profile generation
The usage traces are aggregated into a directed graph such
that redundant action sequences are collapsed. For example,
in Figure 1, three A %�VHTXHQFHV�ZHUH�FROODSVHG�LQWR�RQH�
as were two B '� VHTXHQFHV�� 7KLV� WHFKQLTXH� KLJKOLJKWV
where usage traces diverge.

The redundant action sequences are determined using the
Longest Common Substring (LCS) algorithm [1]. The
running time of our algorithm is bound to that of the LCS
algorithm, O(n2), where n is the count of actions per trace.
Performance for computing the graph from the pilot (six
traces of about 500 actions each) was still acceptable (2
minutes) with completion time dependent primarily on the
time spent reading the data from the database.

RESULTS
Each test participant completed the set of 10 tasks in about
20 minutes. The pilot study both confirmed the validity of
suspected UI defects in the application and exposed
unexpected defects.

1 In the pilot study, a single designer trace was composited from

different sections in the two designer’s traces. The sections
correspond to the parts of the UI each designer designed.

Figure 2 shows the segment of the pilot usage profile where
users are asked to create an integer field for an online
survey. It shows that after naming the survey field (action
A), 75% of the users skipped setting its type to Integer
(action B), incorrectly leaving it as the default type Text,
and continued on to add the next survey field (action C).
The type of the field is important for performing
calculations on field data. Previously, it was unknown
whether even experienced users included the field types in
their conceptual model of survey creation.

Figure 3 shows the segment of the pilot usage profile where
users are asked to configure an automated e-mail message.
This segment exposed an unexpected usability defect. This
section of the UI is used to select the type of mail to send. If
the mail is Electronic, the user need only select the desired
message body (action B) and continue, but if it is physical
mail, there are a multitude of options to configure. After
setting the type of mail to Electronic (action A), the test
users generated several different paths with relatively long
inter-action delays. This can be interpreted as confusion
over available but inapplicable mail configuration options,
leading to unnecessary effort.

FUTURE WORK
An important aspect of interpreting the visualization is
relating it back to the UI. Currently, QUIP displays action
details in a separate panel when the mouse is moved over
the action node. We are developing a more convenient
method for viewing this information, along with ways to
further examine the information represented by the arcs
connecting the actions. Zooming and layout algorithms that
help expose trouble areas will also be explored. We are also
examining automatic highlighting of patterns such as the
divergences illustrated in Figures 2 and 3, as well as
patterns yet to be discovered, to speed detection of defects.

REFERENCES
1. Cormen, T.H., et al. Introduction to Algorithms. MIT

Press, Cambridge, MA, 1990, 314-319.

2. Guzdial, M., et al. Analyzing and Visualizing Log Files:
A Computational Science of Usability. GVU Center TR
GIT-GVU-94-8, Georgia Institute of Technology, 1994.

Figure 2. Omission of important action

A B

C

A B

Figure 3. Confused divergence

